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TECHNICAL PAPER

THE DYNAMIC PHENOMENA OF A TETHERED SATELLITE
NASA'S FIRST TETHERED SATELLITE MISSION (TSS-1)

I. INTRODUCTION

Dynamics of a tethered satellite system are complex in that many modes exist both from a
rigid-body dumbbell assumption and from an elastic phenomenon standpoint including the tether and
the attached bodies. In the initial phases of the tethered satellite project, the major effort was
expended on developing the satellite, understanding the basic rigid-body modes of a tethered sys-
tem, and designing the deployment/retrieval mechanism, reel, tether, and other necessary compo-
nents contained in the orbiter payload bay. This was no small feat, because many mechanism prob-
lems occurred during development. During this time period, it became clear that as the tether current
flowed to achieved science, it created an electric field around the tether that interacted with the
Earth’s magnetic field, causing deflections that can evolve into a dynamic oscillation called
“skiprope.” The word was coined after the child’s skiprope due to the parallel characteristics. The
tether itself has very small inherent damping, therefore, once the oscillation started, it would con-
tinue for long periods of time. It would also grow in an angular sense when retrieved, because
angular momentum is conserved, resulting in larger amplitudes as the satellite gets closer to the
orbiter. This presented two potential problems: (1) skiprope could prevent docking the satellite by
introducing large satellite angles due to the coupling between the satellite pendulous mode and the
first lateral skiprope mode at 400-m tether length, and (2) the large skiprope amplitude could
become entangled with the orbiter, especially if the satellite could not be docked and had to be cut
loose from the orbiter.

A means of controlling the satellite and damping the skiprope had to be designed and base-
lined to ensure mission success. This was accomplished under Marshall Space Flight Center
(MSFC) leadership through the Dynamics and Control Working Group (DWG) chaired by D.K.
Mowery. Membership included personnel from MSFC, Johnson Space Center (JSC), Martin
Marietta, the Smithsonian Astrophysical Observatory, Lang Associates, Logicon, and with
occasional participation by Alenia. Implementation of the dynamic control techniques into operational
procedures using the shuttle crew was accomplished by the Flight Techniques Panel chaired by
Chuck Shaw, the Flight Director for TSS-1. Several members of the DWG were also members of the
Flight Techniques Panel which enhanced communications.

Overall integration of the dynamics was achieved through a series of Technical Interchange
Meetings (TIM’s) lead by MSFC. All parties, including the flight crew, participated in these meet-
ings. Various dynamics experts/consultants were used throughout the DWG activities.

The total project was managed by NASA MSFC through the Tethered Satellite System
(TSS) Project Office. The satellite was designed and built by the Italians. All the mechanisms for
transporting the satellite via the space shuttle, deploying it, and recovery by reeling it into the orbiter
using the tether were designed, built, and tested by Martin Marietta Astronautics Group located in
Denver, CO. JSC was responsible for the operational aspects of the mission.



Acknowledgment is due to the prime contractor, Martin Marietta, for many of the figures and
most of the simulation results displayed in this document, as well as to the “Tethers in Space
Handbook! from which several of the figures have been taken.

II. TETHERED SATELLITE DEFINITION/CHARACTERISTICS/MISSION

A. Satellite

The satellite itself is spherical in shape, containing numerous scientific instruments,
antennas, the reaction control system with appropriate sensors, and the tether attach mechanism.
The basic features of the satellites are shown in figures 1 and 2. The attitude control system is
composed of four rate-integrating gyros with feedback, horizon scanner (Earth scanners),
accelerometer, and magnetometers, with thrusters (reaction jets) in the positions needed for attitude
control, science, and tether deployment. Three gyros are aligned to the satellite axes, the fourth is
skewed to preclude saturation (above 2°/s) during spin. The accelerometers were telemetered for
science instrumentation as were the magnetometers which were also used as inputs to the skiprope
observer. There are eight thruster groups (figs. 3 and 4). Four nozzles are in-plane (pitch), four are
yaw, two are out-of-plane (roll), and four are in-line. The tension is maintained during operations by
gravity/centrifugal forces and in-line thrust.

B. Support and Deployer Mechanisms

The satellite support structure and deployer are shown undeployed in figure 5. Figure 6
shows the satellite on the tip of the deployer boom. Figure 7 is an end view of the same configura-
tion. More details of the undeployed system are shown in figure 8. Figure 9 shows the tether with
Nomex core, the copper conductor covered by a 0.012-in thick insulation and wound with 10 strands
of Kevlar, then braided on the outside with Nomex. Figure 10 shows the 12-m deployment boom,
docking ring, U-2 tether guard, tether, concentric ring damper for damping close-in skiprope, and the
satellite. Figure 11 is a more detailed schematic of the satellite support structure. Figure 12 is a
schematic showing the tether control system components. The lower control and upper control mech-
anisms, reel assembly, and level wind mechanism are depicted. Figure 13 illustrates the reel support
structure and reel, figure 14 is the lower control mechanism, figure 15 is the upper control mech-
anism, and figure 16 is the level wind mechanism.

The purpose of these mechanisms and structure is threefold: (1) to provide a means of trans-
portation in the orbiter; (2) to serve as an operational base for the deployer and, through the pallet,
as an interface with the orbiter; and (3) to deploy and retrieve the satellite. In order to move the
deployer docking support away from the orbiter during operations, an extendible boom is used.

C. Science Objectives

The prime objective of the TSS-1 mission was to demonstrate the capability to deploy a
525-kg (1,100-1b) tethered satellite to a distance of 20 km (12 miles) above the space shuttle,
acquire scientific and operational data, and return the satellite to the shuttle for reuse. In conjunction
with this primary objective, several technical and scientific objectives were defined (fig. 17).
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Figure 5. Cargo bay view of orbiter for TSS-1 mission.
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Specifically, the electrical and mechanical behavior of the combined satellite, tether, and orbiter
system were to be investigated. Because the orbiter and satellite are connected by the tether, they
become one orbiting system. From an operational standpoint while the satellite is deployed, the
orbiter cannot operate in its standard reference frame, but must work in the system reference frame.
Of interest is the satellite and orbiter charging phenomenon as well as tether current and voltage
measurements. Understanding the system dynamic response, especially of the tether and satellite
dynamics, is key for future tether applications. Verification of these dynamic characteristics can only
be accomplished on orbit, because ground test of a long cable (tether) in a vacuum and zero-g is not
possible. Other objectives were to investigate characteristics of plasma waves generated by the
TSS, to conduct studies that utilize the unique aspects of the TSS as a remote observing station, and
to investigate tether optical phenomena.

Figures 18 and 19 are a more detailed listing of the science objectives, some of which were
implemented by instruments in the shuttle cargo bay and satellite. Figure 20 is a pictorial represen-
tation of the satellite, tether, and orbiter system showing current flow, beams, etc., including satellite
spin and the geomagnetic field lines.

This is a short overview of the science objectives. More details can be obtained from the
project office and the scientists involved in the mission.

D. Mission Profile

The mission profile is approximately 30-h long and is broken into five distinct phases. Phase 1
is the deployment which is planned to last 5.3 h. Phase II is to be 10.5-h long for science experi-
ments with the tether fully deployed at 20 km. In phase III, the tether is retrieved down to 2.4 km
during a 6.75-h time period. The tether is planned to stay at 2.4 km for 5 h for damping dynamics,
preparation for final retrieve, and maybe more science (phase IV). Phase V is the final retrieval and
satellite docking. The mission priorities of the mission phases are shown on figure 21. The highest
priority was deployment. Priority two was the science during phase II. All other phases (including
retrieval of the satellite) were of priority three. Other activities present during the mission are also
shown on the chart. They include such things as when the satellite was to be spinning and what
instruments were on. The other items associated with skiprope control will be discussed later.

The next section will discuss the dynamic phenomena associated with a satellite tethered
from the space shuttle vehicle.

III. DYNAMIC PHENOMENA OF A SATELLITE TETHERED FROM THE
SPACE SHUTTLE

Developing a simulation (model) for a satellite deployed on a tether from an orbiting vehicle,
platform, or station is a very complex problem. Not only is the system in orbit, basically in a vacuum,
in zero-g, and under gravity gradient and magnetic forces, but it has the time-varying dynamics of a
long, flexible, variable length tether, the orbiter, and the satellite. The system also has to deal with
the deployer mechanism and docking. This modeling task required that a description be written for
the environments, natural and induced, which includes gravity gradient, the Earth’s magnetic field,
current-flow-induced magnetic fields, solar pressure, and thermal. Further, the satellite and its con-
trol system had to be modeled along with the tether characteristics and the orbiter characteristics.
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This dynamic system is a closely coupled system between basic orbital mechanics, dynamics, con-
trol, mechanisms, and orbital environments. It is a system problem complicated by the zero-g
environment which precludes complete ground verification. In addition, it is a system with low
dynamic frequencies (long periods). The parts have the potential to interact and tune which creates
various dynamic situations that must be understood. Depending on the particular phenomenon under
study, various assumptions were made that simplified the problem, giving more efficient develop-
ment of information. The following section discusses the basic model developed.

A. Basic Model

The satellite itself was modeled as a rigid body in translation and rotation with a constraint
force introduced by the tether which is connected to the orbiter. This established a single system in
orbit characterized as a classical orbital mechanics problem. Because the tether is attached by a
yoke to the satellite, constraint exists in yaw in that any induced satellite spin in one direction has to
be taken out by introducing equal amounts of opposite spin. The reaction jet control forces had to be
modeled along with the control logic. The same is true of the orbiter and the tether deployment
mechanism. Before looking at all the details, it is prudent to understand the orbital mechanics and
dynamics of the system assuming a rigid tether.

1. neral (“D . The TSS tethered to the space shuttle is, for all
practical purposes, a “dumbbell” although the two masses are different. If the tether is assumed
rigid, then the forces acting on the system are as shown on figure 22. o

In this case, the upper mass experiences a larger centrifugal force than gravitational force,
and the lower experiences a larger gravitational force than centrifugal. This results in a vertical
orientation due to the force couple. This orientation is stable with equal masses or with unequal
masses either above or below the center of gravity. Displacing the system from local vertical
produces restoring forces at each mass which tend to return the fixed length system to the vertical
orientation (fig. 23). Dynamically, the system will oscillate about this equilibrium position until
damped. This mode is called libration.

Another point needs to be made. The masses are constrained by the tether to orbit with the
same angular velocity as the center of gravity of the system. The orbital speed, period, and angular
velocity depend on the orbital radius, and are independent of the tether system mass.! This tether
system now rotates about its center of gravity once per orbit, because it stays in a vertical orienta-
tion. The angular speed of the two masses is the same. If they were cut loose, the upper mass would
be slowed down, while achieving a higher altitude. At the same time, the lower mass would speed
up while going to a lower altitude. All system forces are through the tether. Even though the system
is stable, the forces from the magnetic field, solar pressure, and the aerodynamics cause the system
to deflect and oscillate in the orbit plane as well as perpendicular to it (out-of-plane). Excessive
oscillation (above 64°) must be controlled or the cable loses its tension (see later sections).

Next, the two masses rotate about their respective centers of mass where the restoring force

is the tension in the cable. Additional restoring forces can be introduced using attitude control and
control rate damping. This is called the pendulous mode (fig. 24).
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Figure 24. Pendulous mode.

I
Y

Removing the assumption of tether rigidity opens up many additional modes that have to be
modeled, understood, and controlled. The first of these assumes that the reel mechanism is locked
and, therefore, the only additional force is due to the tether elasticity. In this case, the satellite bobs

by stretching and contracting the tether (fig. 25).

7 Tae

Figure 25. Bobbing mode (reel locked).

This simple model assumes the orbiter mass is much greater than the satellite. However, the
bobbing mode still occurs if the masses are equal, in which case there would be two modes, one
where the masses are in phase and one where they are out of phase.

If the reel is unlocked and is active in tether control, then the bobbing mode is more complex
(fig. 26). The reel motor dynamics and control become an integral part of the equation including the
motor and the reel inertia. This adds a variable tension force proportional to the reel in and out
acceleration. Gravity gradient forces also play a role in the dynamics (a later section will deal with

this control concept).
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Additional modes potentially exist such as traveling waves and various couplings of the
modes discussed. The modes that impact a mission must be characterized, modeled, and dealt with
for mission success. Sensitivity analysis is a good approach to understanding these key areas.

2. Motion (Modal Curvature). In addition to the characteristics just described, the control
forces from the orbiter, satellite, and deployer mechanism must also be modeled (see later sections)
because they interact with the other dynamic situations discussed. The system becomes very
dynamically complex due to the orbital mechanics and induced environments.

There are several ways to model this complex system. The first way is to use the energy
approach which assumes normal lateral modes of the tether (modal synthesis). This approach makes
very few assumptions and is more desirable; however, it is more complex and requires more simula-
tion effort and, in general, more computer cost. This is particularly so when the tether length is vary-
ing. The second approach uses lumped masses for the tether, for instance 20, and is simple in con-
cept and is computer efficient. The lumped mass (beads) uses many restrictive assumptions,
particularly as the tether is reeled in or out and beads appear or disappear. The bead approach has
been fairly accurate for long tether lengths, providing insight and simplifying computer simulations
which increases computer efficiency. Both types of models, along with simplified reductions of these
models, have been used to study the TSS-1 system characteristics and to develop control
approaches. The energy approach is the baseline, determining when, where, and to what extent the
more simple models can be used. Because the total systems model cannot be ground-verified, only
discrete parts were verified and combined into the model. To protect against unknowns which are not
ground-verifiable, sensitivity studies varying all the system parameters have been conducted to
ensure success. Also, several different modeling approaches have to be used, compared, and under-
stood.

B. Dynamic Characteristics

Solving the equations produces the characteristics of the system. Several distinct system
modes exist (fig. 27). The first mode is the libration mode (fig. 28) where the satellite and orbiter
oscillate about the center of gravity of the system. Actually, the orbiter oscillates also, but its ampli-
tude is very small compared to the satellite due to the mass differences (factor of 200). The second
mode is a bobbing mode where the elasticity in the tether (tensions plus materials) is the prime
contributor. The third mode is between the satellite rotation and tether tension and is called the
satellite pendulous mode. Next, several lateral string modes of the tether exist, and are typical
modes of a string under tension and material elasticity. They are the classical modes of strings
classified as first (fig. 29), second, third, etc. Also, traveling wave modes exist that travel along the
tether at the speed of sound. Last, there exists the local yaw attitude and spin mode of the satellite
and orbiter.

Figure 30 is a plot of some of these fundamental frequencies as a function of tether length in
meters. The satellite pendulous modes pass through resonance with the bobbing model
(longitudinal) then the various string modes as the tether is shortened. Figure 31 shows a blowup of
these frequencies in the resonance condition. The greatest energy transfer occurs around a tether
length of 430 m when the first lateral string mode is in resonance with the satellite pendulous mode.
At this condition, without any damping, 1 m of skiprope can introduce approximately 6° of satellite
pendulous motion. This means that some means must be available to control both the satellite
motion and the skiprope, or satellite recovery is not possible.
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C. Generalized Forces

The forces acting on the system must be described in more detail for this total system than
those discussed previously. These forces are: gravity gradient, aerodynamic drag, electromagnetic,
solar pressure, centrifugal, thermal gradient, debris impact, and control. They affect basic dynamics;
for example, the electromagnetic force deflects the tether resulting in skiprope, the main thrust of this
report. In addition to these forces, an understanding of deployment and retrieval forces needs to be
acquired.

Aerodynamic drag can deflect the tether which may induce out-of-plane tether libration. The
aerodynamics produce both a lift and drag force on the tether. This lift and drag can be formulated as
a point force at the center of gravity or a distributed force. In general, only the point force is needed;
however, in special cases, the distributed force may be needed. The drag point force is:

Firag=05 f pCpV?2 (width) §,.

Gravity gradient and centrifugal forces can be graphically illustrated together. The gravity
force is maximum at the end nearest the Earth, decreasing linearly with increasing distance from the
Earth. The centrifugal force increases as the point moves along the tether from the lowest point.
These two forces cancel out at the center of mass. At other locations, an object will experience a net
force vertically away from the center of mass. This is called gravity gradient; however, part of this
net force is due to the centrifugal force (fig. 32).

The electrodynamic force depends on whether the flow is into or out of the upper plasma
conductor (satellite). If it flows in the tether and acts as a power (generator), the force is a
decelerating force. Flow out produces a thrust (motor), and the force is a uniform accelerating force
(fig. 33).

The control forces arise from the reaction jet control system of the satellite and orbiter and
are a function of the control laws (see section D).

One other force is important to the problem being discussed; the deployment force that is
created once the satellite is given an initial impulse away from the orbiter. The two end masses are
in the same orbit, and, since the gravity gradient force is proportional to separation distance, after a
certain distance from the orbiter, the combination of gravity and centrifugal forces is sufficient to
overcome system losses (friction) and continue the separation. As was discussed earlier, because
the two masses are constrained by the tether, the upper mass gains a higher kinetic energy per unit
mass than the lower mass. The tether constraint is such that both the orbiter and satellite have the
same angular velocity. During deployment, the lower mass will drag the upper mass until libration
occurs. This results in momentum transfer through the tether from the upper to the lower mass as
tether tension. The off-vertical attitude is caused by the coriolis term of the acceleration expression
creating libration of the system as tether length is changed (fig. 34). The coriolis force is perpendicu-
lar to the Earth’s radius for radial deployment/retrieval.

All these forces must now be expressed in terms of the system chosen to describe the

characteristics of the tethered system. Those that have negligible effect on these characteristics can
be deleted from the simulations.
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Figure 34. Dynamics during tethered deployment.

D. Control Systems

The last systems that have to be modeled are the control systems. These consist of the
satellite, orbiter, and reel mechanism.

1. Satellite Control System. The satellite uses the attitude measurement and control system
(fig. 35) to point or spin the satellite’s yaw attitude (about the tether line) and to provide satellite
attitude information to the orbiter crew and the ground. The satellite has four integrating rate gyros
(one for each axis and one skewed) to provide real-time attitude data and two Earth sensors to
update the attitude data. Four Sun sensors are used to measure the satellite’s attitude, but are not
used in the control loops. The satellite has 14 nitrogen gas jets: four jets provide tension augmenta-
tion (fail operational redundancy) when the natural tension is below two Newtons; four jets provide
yaw attitude control; four jets provide pitch rate damping; and two jets provide roll rate damping. One
valve controls the flow to two jets for tension augmentation, yaw control, and pitch rate damping.
Another valve per jet is used to control roll rate damping. The pitch and roll rate damping jets do not
produce pure torque; consequently, translation results which induces libration. If libration already
exists, firing the proper thruster can reduce libration while reducing the attitude rate. If libration does
not exist, alternately firing the opposite thruster will minimize the induced libration.

A closed-loop control system is used for the satellite’s yaw attitude and to point, or spin, the
satellite. While the satellite is spinning, the satellite’s attitude information is not processed. The
satellite spins during deploy and while on station. The electrodynamic experiments utilized the
satellite spin to monitor tether current uniformity with satellite orientation. The satellite was
designed to spin at 1.5°/s during deploy so that gyro saturation (which occurs at 2°/s) will not occur;
otherwise, control could not be maintained using the gyro. On station, the design satellite spin rate
is between 3.6°/s and 4.2°/s so that the skewed gyro will not be saturated. When the satellite
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changes from the spin mode to the attitude hold mode, it must go through the despin mode. This
despins the satellite, orients the yaw axis, and initializes the attitude hold mode which allows the
processing of attitude information for telemetry. The passive mode is used when deploying the
satellite’s antennas and for contingencies.

2. Orbiter On-Orbit Control System. The on-orbit control system uses six 25-1b thrusters for
vernier attitude control and thirty-eight 870-1b thrusters for translation and attitude control. The
orbiter provides libration control throughout the mission by performing orbiter translations. For
tether lengths less than 6,000 m, the orbiter performs three-axis control. Beyond 6,000 m, the orbiter
controls its yaw axis and damps its pitch and roll pendulous motion, while the tether force maintains
orbiter pitch and roll attitude. The orbiter control system performs a yaw maneuver to damp skiprope
which uses centrifugal force to reduce the energy in skiprope. Further information regarding the on-
orbit control system can be obtained from reference 4.

3. Reel Mechanism Control. This system controls the reeling rates of the deploy and retrieve
systems and, hence, the in-plane libration angle. The vernier motor at the top of the boom provides
the force to overcome the friction in the mechanisms, while the reel motor regulates the retarding
torques to provide the desired reeling rate. The logic for the retarding torque is shown in figure 36.
The logic is resident in the data acquisition and control assembly (DACA) from which reel motor
voltage commands are generated and to which encoder measurements of encoder length and length
rate are received. Contingency controls are provided by direct command of motor pulse width by the
crew. Their cues come from the encoder or radar length and length rate as well as tension which are
displayed on the aft flight deck. This loop is illustrated in figure 37.

The computer logic contains profile computations which are based on controlling the in-plane
libration angle. This logic generates the desired length and length rates which are compared to the
measured values from the encoder. At reeling rates below 0.1 m/s, high gains are used to smooth
reeling rates. This is done when Kr > 0. When Kr = 0, a meter of length error results in 0.5 V to the
reel motor. Compensation is made for the back EMF in the reel motor by using the desired
(commanded) reeling rate to produce a compensating control voltage.

E. Model Verification

The TSS project has used many different methods (equations, etc.) for describing their sys-
tem characteristics. These have been used in design and verification, and will be key to skiprope
control during operations. It became a key point that these simulations must be validated in order to
ensure success of the mission. This has been accomplished through simulation comparisons and
ground testing of both the tether and the mechanisms.

1. Simulation Comparisons. To ensure similarity of results between the various simulations,
a set of 35 different mission cases was selected for analysis on each simulation. The results of this
simulation comparison have been documented in reference 5. Adequate correlation between the vari-

ous simulations existed, such that all models were declared adequate to perform the job assigned.
Figure 38 shows the cases compared.

2. Tether Testing. The dynamics of the tether required testing to verify both the inherent

structural damping, stiffness characteristics, and the modal phenomena. Understanding aerodynamic
effects was also required in order to allow some atmospheric testing to save cost.
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Figure 37. Manual deployer control scheme.



lati mpari

* An Effort Was Undertaken to Validate The Level 1 Simulations of
JSC (STOCS) and MMAG (Model 3)

» 35 Validation Cases Were Proposed
- 19 Environmental and Tether Model Cases
- 5 Subsystem Cases
- 11 System Cases

* All These Cases Have Been Run and Compared and
Documented -

‘Figure 38. Model validation.

Initially, a series of tests was run on the tether to determine stiffness and damping character-
istics. This was necessary due to the tether makeup shown in figure 9. In order to separate the
structural damping from aerodynamic damping, tests of skiprope dynamics were run in both the
vacuum chamber and in air using only short tether lengths because of facility limitations. The aero-
dynamics had effect and had to be accounted for in the atmospheric testing results. The test setup for
one such damping test is shown in figure 39. The results of the test are shown in figure 40. Although
the test lengths were too short to apply directly to TSS-1, the trend of the damping with length
suggests that damping for operational lengths will be minimal. Consequently, most of the studies
have been performed with no material damping simulated. This is considered to be a conservative
approach.

MAGNET
LOAD CELL

TETHER—_. ~ < [F
/\-‘ " — TENSION MOTOR

STEPPER MOTOR

DEAD END

Figure 39. Twang test setup.
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Figure 40. Material damping decreases with length.

The skiprope dynamic modeling approach had to be verified. Concern existed that the
skiprope would introduce twist in the tether, creating various problems. Simulations assumed that no
twist occurred, and what happened physically was energy transfer between string modes in the two
perpendicular planes. Figure 41 illustrates this energy exchange phenomenon.

Figure 41. Skiprope phenomenon.
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For each position of the tether in a circular skiprope motion (R = R'), the deflection in the X
and Y plane can be written as:

X@®)=ZIn, 07,2
YO =Zn, 00 ,2).

In moving from position 1 to position 2, the tether does not twist but merely transfers the
energy from the Y plane to the X plane. Performing tests both in the atmosphere and in a vacuum
demonstrated this to be the case. Motion pictures (video) were taken tracking points on the tether.
There was never any tendency to twist, as any child knows from experience of holding the rope ends.

The last series of tests had to do with the deployer mechanisms themselves, because they
are used in some manner to control the libration modes. These tests were run in both atmosphere
and vacuum, including thermal effects. What could not be simulated was the zero-g effect.

IV. SKIPROPE CONTROL ELEMENTS/VERIFICATION

As the design evolved, it became apparent that skiprope had to be contained or a high risk
that the satellite could not be recovered had to be accepted. There also existed some potential that
excessive skiprope could be a safety problem due to entanglement with the orbiter. The crux of this
paper, which follows, deals with the skiprope control elements and their verification for solving the
skiprope problem.

A. Basic Problem Characteristics/Solution Approach

Recalling charts (figs. 27 through 31) and the dynamic frequencies of the system, the basic
characteristics can be seen. Design of the mission was such that when the tethered satellite has
completed deployment and is on station 1, science is conducted. As discussed previously, when
current flows in the tether, regardless of the science mode under investigation, the electric field
surrounding the tether interacts with the Earth’s magnetic field to deflect the tether. As the system
moves around the orbit, the science pulsing the current causes this deflection to become classical
skiprope. Depending upon the conditions of the science conducted and when it is conducted, various
amplitudes of skiprope can be excited. As the tether is reeled in from 20 km to 2.6 km (at the
beginning of station 2), the induced skiprope remains. As the tether is reeled in from station 2, at
approximately 500 m the first tether string mode resonance coalesces with the satellite’s pendulous
mode, transferring energy to this motion. If the satellite angular motion gets too large, docking and
recovery of the satellite is impossible. In addition, the relative amplitude of the skiprope departure
angle increases during retrieval, because angular momentum must be conserved. This coupling
between satellite pendulous mode and the first lateral tether mode is the basic problem that must be
solved in conjunction with containing the lateral string mode as the satellite is retrieved from 400 m.

These problems have led to the development of a multifaceted approach for containment of
skiprope, producing successful satellite recovery, and the elimination of safety concerns involving the
orbiter and crew. The basis of the approach is to determine how much skiprope amplitude can be
handled from 600 m in and then provide a means of damping skiprope to this level prior to entering
this period. The elements of this multifaceted approach are: (1) observing the skiprope amplitude and
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phase using satellite control information (telemetry data); (2) orbiter yaw maneuvering during sta-
tion 2 based on the observer data to reduce the skiprope amplitude below 20 m (the amplitude that
can be handled during reel-in from 2.4 km); (3) attitude control of the satellite during the resonance
period discussed; and (4) use of a passive tether damper to suppress skiprope as the satellite gets
close to the orbiter. Figure 42 shows these basic schemes with acceptable gates for successful
recovery of the satellite. In addition to these basic control mechanisms, a series of gates and priori-
ties has been developed along with basic priorities that allows for cutting the tether and losing the
satellite for safety reasons. The next sections will address, in detail, these various elements of
skiprope control.

B. Observers (Time, Frequencies, and Visual)

As was stated previously, the capability of the observer to determine the skiprope amplitude
and phase is one of the keys to handling the problem. The other keys are manual satellite attitude
control (at least for TSS-1) and the use of a passive damper at the docking rings. First-, second-,
and third-priority approaches have been developed with priorities two and three being active during
operations as backup to priority one. These are: priority one is a time domain approach using Kalman
filtering, priority two is a standard frequency domain approach, and priority three is visual by the
crew using available cameras.

1. Time Domain Observer

a. Characteristics/Assumption. The time-domain observer is based on the assumption
that there is a direct correlation between the satellite attitude data (telemetry) and the skiprope
dynamics. The estimation is made based on a Kalman filtering technique and a nonlinear dynamic
model of the tethered satellite system. Figure 43 gives the basic flow (characteristic) of the
approach. The program contains a simulation of the skiprope and the satellite dynamics allowing the
filter to project ahead based on past satellite data estimating the skiprope characteristics. This
approach allows the observer to continue to predict skiprope even with telemetry data dropout. The
frequency domain approach does not have this capability because it does not have predictive capa-
bility. Adjustment of the filter parameters and the degree of sophistication in the dynamic simulation
allowed tuning of the approach to improve accuracy. For example, higher-ordered string modes,
though not included for the TSS-1 mission, could be included in the nonlinear simulation to improve
the accuracy of the prediction capability.

The basic characteristic of the time-domain filter is that it can operate with the satellite dur-
ing: S

~ Deploying, retrieving, or on station
— Spinning, in yaw hold, or passive

— Flowing tether current or not.
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As mentioned previously, it can operate with some failed sensors and can handle limited
telemetry dropouts. It is applicable for all tether lengths greater than 1,000 m and provides real-time
display of tether motion. It estimates:

— Skiprope amplitude phase and direction

— Libration angles

Skiprope period

Satellite attitude.

!

It dead-reckons during loss of signal. It has an accuracy between 5 and 15 m and provides a
real-time estimate of its own accuracy.

The current time-domain estimator is based on the following assumptions:

Skiprope motion is predominantly first-mode

No large tension oscillations

System mathematical model is adequate

Telemetry data used are available real-time.

The time-domain filter was developed and verified using a series of simulation results which
used the models described in section III B. Data noise and various failure modes (telemetry) were
used. These cases include:

~ Deploy

On station (1 and 2)

Retrieval from station (1 and 2)

— During maneuvers

With and without current flow, satellite spin.

Figures 44 and 45 describe the cases used.

The case YAWA station 2, starting with a skiprope amplitude of 50 m, is shown on figures 46
and 47. The actual case is compared to the filters estimation. Notice that the greatest prediction
error occurs during the yaw maneuver. As soon as the yaw maneuver is over, the high prediction
accuracy is present. Figure 46 is the U-axis plot, while figure 47 is the V-axis plot. In addition to
these cases, sensitivity studies were run for:
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ST1A: Station 1, Current Flow, Satellite Spinning at 4.2°/sec, Booms Extended

ST1B: Station 1, Current Flow, Satellite in Yaw Hold, Booms Retracted

ST1C: Station 1, No Current Flow, Satellite Spinning at 4.2°/sec, Booms Extended
ST2A; Station 2, Slow Retrieval, Current Fiow, Satellite in Yaw Hold, Booms Retracted

ST2B; Station 2, Slow Retrieval, No Current Flow, Satellite in Yaw Hold, Booms Retracted,
Yaw Maneuver Performed

ST2C: Station 2, Current Flow, Satellite Spinning at 4.2°/sec, Booms Extended
ST2D: Station 2, Current Flow, Satellite In Yaw Hold, Booms Retracted

YAWA: Station 2, Slow Retrieval, No Current Flow, Satellite in Yaw Hold, Booms Retracted,
50 m Skiprope, Yaw Maneuver Performed (5 Orbiter Revolutions)

YAWB: Station 2, Slow Retrleval, No Current Flow, Satellite in Yaw Hold, Booms Retracted,
50 m Skiprope, JSC Yaw Maneuver Performed (3 Orbiter Revolutions, 30 Minute Wait, 2
Orbiter Revolutions)

Figure 44. TDSO simulation test cases.

REI1A: Retrieval 1, Current Flow, Satellite in Yaw Hold, Booms Retracted (Mission Time of
19 Hours)

RBRET1B: Retrleval 1, Current Flow, Satellite in Yaw Hold, Booms Retracted (Mission Time of
21 Hours)

RET1C: Retrieval 1, Current Flow, Satellite in Yaw Hold, Booms Retracted (Mission Time of
23 Hours)

RET2A:; Retrieval 2 at 2.35 km, No Current Flow, Satellite in Yaw Hold, Booms Retracted
RET2B: Retrieval 2 at 1.5 km, No Current Flow, Satellite in Yaw Hold, Booms Retracted
DEPA: Deployment at 1 km, Current Flow, Satellite in Yaw Hold, Booms Retracted

DEPB; Deployment at 10 km, Current Flow, Satellite Spinning at 1.5°/sec, Booms Retracled

Figure 45. TDSO simulation test cases.
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— Modeling sensitivity
— Disturbances in higher translational modes
— Tension-mode disturbances.

Also, the filter was run in end-to-end simulations with high-fidelity dynamics simulated. The
accuracy was typically 5 to 15 m, with the large errors occurring where predictions were not critical
(dependent on high-mode content). There was low sensitivity to modeling errors, and the filter can
cope with expected levels of tension oscillation. The filter was also effective in timing damping

maneuvers (orbiter yaw).

Flight operations software was developed for the preprocessor of the telemetry data along
with the filter software. Figures 43 and 48 show this total loop of the preprocessor and the time-
domain filter. Portions of this same preprocessor could be used with the frequency domain filter;
however, this was not the case for the TSS-1 implementation as completely independent implemen-
tation was chosen. This system was first programmed for the Mac II computer so that it would be
accessible to several engineers to understand and stress the system. After this was accomplished,
the software was converted to the MassComp computer at JSC that was used in operations. Several
check cases were run on the operations computer (MassComp) and compared to the cases run on
the Mac II system,

b. Certification. Upon completion of the development program, the filter went through formal
certification. This was accomplished using documented requirements, test plans, and procedures.
Thorough unit testing was accomplished, verifying all requirements. The software was then put
under configuration control. All testing was witnessed by Quality Assurance (QA) and the Defense
Projects Reliability Office (DPRO) and met all formal sign-off requirements, including a formal
review board.

c. Examples. Many cases of the dynamic skiprope have been run using various conditions to
serve as tests for the filter accuracy. These cases were used as inputs to the filter and served as the
standard. These cases included telemetry dropout as well as different maneuvers and science pro-
files. Figures 49 through 54 are some of these cases plotted in the time domain. Satellite motions
and skiprope motion are plotted.

d. Operations. During operations, the output of the filter will be observed by operations per-
sonnel in real time. From these data, they will determine the magnitude and phase required for the
yaw maneuver. These data will also be recorded for use in understanding the skiprope phenomenon
for later missions.

Training of the ground observer crew was accomplished through operations training at the
Houston (JSC) operations center. Primary and backup personnel were trained for the mission.

In addition to determining the yaw maneuver characteristics to be uplinked to the crew,
mission design calls for the filter output to be used as input for the safety gates developed to ensure
crew safety at all times. The use of safety gates is the standard operating procedure for all shuttle

flights. Two separate computers and programs exist for redundancy.
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True V (m)

i

-60.

, H H i i H != i ; : §
0. 10. 20. 30. 40. 50. 60. 70. 0. 90. 100 110. 120 130. 140 150. 160. 170. 180. 190 200. 210 220. 230 240. 250

‘Time (s)

Figure 49. Typical results at 2,400 m, “noiseless” sensors, no current flow.
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Figure 50. True motion pattern for retrieval case.
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True and Estimated Motion, Meters

True and Estimated In-Plane Libration Angle, Deg.

_/Estimated U (m)

N

L

'.'“!.E‘Stimaled V {m)

'0._ 50. 100. 150. 200. 250. 300. 350. 400. 450. 500. 550. 600.

Time (s)

650.

700.

750.

Figure 51. Filter U, V outputs compared to truth for noiseless retrieval case.
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Figure 52. In-plane libration estimates by TDSO.
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2. i i . The frequency domain observer had the
same purpose as the time domain observer. It was used to backup the time domain filter and was to
be run in parallel during flight operations. The frequency domain estimator is based on a Fourier
transformation of the satellite telemetry data. Data are recorded continually in time by keeping a
constant time increment and sliding a 30-min data window along, thus capturing the data in a 30-min
buffer. The stored data set is then analyzed by Fourier transform for discrete frequency, amplitude,
and phase. Figure 55 is a block diagram of this process.

The same check cases have been used for the frequency observer as were used for the tifhe
observer. Tables 1 and 2 are the results of these check cases. Adequate results were obtained for
understanding the skiprope phenomenon, and, for orbiter yaw, a maneuver command was obtained.
More recent studies (not incorporated for TSS-1 (STS-46)) have enhanced this filter's capability to
predict nonconstant amplitude and also phase during spinning.

The frequency domain observer went though the same certification as the time domain and
was witnessed by software QA. The accuracy was typically between 5 and 15 m.

The assumptions made in developing this observer were:

— Tether motion in phase with gyro rates

Motion proportional to gyro rates of opposite axes

Proportionality factor a function of tether length

Motion nearly periodic

Motion at approximately predicted frequency

Precession, if any, is slow.

The test cases with synthetic telemetry from simulation were run for:

— Station 1 and 2

— With and without satellite spinning

— Varied motion amplitude

— Circular and elliptical motion

- Mock gyro test signals.

Operations aspects are the same as described for the time domain observer.

3. Visual For shorter tether lengths (at or below 2.4 km), the skiprope motion can be
observed by the flight crew by eyesight or by the use of an on-board camera. This is a contingency

mode that the flight crew has trained for in case telemetry is lost. To date, it has shown to be effec-
tive in prescribing the yaw maneuver characteristics.
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C. Orbiter Yaw Maneuver

As was discussed previously, the orbiter yaw maneuver is designed to be used on station 2
(2.4 km) to reduce the skiprope amplitude to a level that is manageable during final retrieval and
docking; less than 20 m of skiprope. Figure 56 shows the yaw maneuver technique to dampen the
skiprope. The yaw maneuver is managed via observers (ground ops) who send up the amplitude and
timing for the maneuver. Simulations have been run to show the effectiveness of the maneuver using
both a continuous maneuver and two separate maneuvers. Table 3 shows two simulation cases.
Figure 57 shows how well the skiprope amplitude is reduced using the two separate yaw maneu-
vers. In order to accomplish this damping of the skiprope: '

— The orbiter rotations must lag the skiprope motion by 90°

The orbiter rate must equal the skiprope rate

The skiprope amplitude and the offset of the deployer boom from the orbiter center of
gravity dictate how many orbiter rotations to perform

Errors in phase and frequency reduce yaw maneuver effectiveness.

Data that must be telemetered to the crew in order to perform the yaw maneuver are calcu-
lated by the skiprope observers:

— Time to start maneuver (skiprope phase)

— Orbiter yaw rate (skiprope rate)

~ Number of orbiter rotations (skiprope amplitude).

Examples:

Figure 58 describes operational constraints on a case run to illustrate the effectiveness of the
yaw maneuver. Figure 59 shows the orbiter yaw rate, figure 60 is a plot of the skiprope amplitude,
and figure 61 is a plot of the skiprope angular momentum.

Figure 62 describes another simulation run. In this case, it is one maneuver. Figure 63 is the
orbiter rate, figure 64 is the skiprope amplitude, and figure 65 is the angular momentum. Because the
original skiprope was elliptical and 10 by 20 m, the overall amplitude was not reduced much; how-

ever, the angular momentum of the skiprope was reduced by 75 percent.

Many other cases have been run, all demonstrating the effectiveness of the yaw maneuver.

D. Satellite Attitude Control

The satellite has in-plane (pitch), out-of-plane (roll), and yaw thrusters. Originally, the
thrusters were used as pure libration (in-plane and out-of-plane), and yaw control (fig. 3). In addi-
tion, there were in-line thrusters for tension augmentation during deployment and retrieval. As the
program developed, and in particular the understanding of the systems dynamic (line modes/skiprope
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Initialized A 50 Meter Circular Skiprope.

Simulation Run From A Mission Time Of 24.0 Hours To 25.5 Hours.
Tether Length Varies From 2.7 KM To 2.542 KM.

No More Than 3 Orbiter Rotations Performed Per Yaw Maneuver.
2 Yaw Maneuver Performed.

-  First At 24.31 Hours With 3 Orbiter Rotations

- Second At 24.99 Hours With 1.5 Orbiter Rotations

Figure 58. Yaw maneuver simulation.

orbiter yaw rate
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Figure 59. Yaw maneuver simulation (orbiter yaw rates).
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68

Used Skiprope Initial Conditions Generated By Using The May 1991
Science Current Profile For The Nominal Mission.

Started With A 25 By 10 Meter Elliptical Skiprope With
Approximately 5 Meters Of Third Mode Amplitude.

Simulation Run From A Mission Time Of 25.5 Hours To 26.5 Hours.
Tether Length Varies From 2.542 KM To 2.431 KM.

Yaw Maneuver Performed At 25.83 Hours With 0.7 Orbiter Rotations

Figure 62. Yaw maneuver simulation.
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Figure 63. Yaw maneuver simulation.
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and satellite attitude frequencies), the need for satellite attitude control developed. In order to
achieve this attitude control by firing the thrusters without totally redesigning the APS system, the
out-of-plane thrusters and the in-plane thrusters were both canted (20° and 30°, respectively),
thus producing moments for control (fig. 66) as well as a remaining, but now unwanted, translational
component. To offset the effects of the translational components, control firings must involve
thrusters on opposite sides in relatively equal amounts.

+I3
A

In-plane resr
{- pitech)

+Xg

In-plane
front
(+ pitch)

Out-of-plane
Out-of-plane Teft (+ roll)

right (- foll)

Nete) [a-plane senrles gented M°,
Out-af-pleas sesales conted 28°,

Figure 66. Satellite auxiliary propulsion system.

The need for attitude control developed when it was understood that, at approximately 430 m,
a coalescence of the skiprope and the satellite attitude frequency (pendulous) occurs with significant
transfer of energy. During this coalescence, the satellite attitude can be excited (6° satellite attitude
for each meter of skiprope). Without satellite attitude control, skiprope motion greater than 7 m will
drive the satellite attitude beyond recovery limits. Canting the thrusters allows this attitude control.

During tether operations, the orbiter receives and displays the satellite attitude data (fig. 67).
Using these data, two options are available for satellite attitude control: (1) the crew can command
attitude control by reading the displays and firing the thrusters, and (2) the payload control super-
visor (PCS) orbiter computer system can receive the signals and command the thruster firings. This
is a psuedo-closed-loop approach relieving heavy man-in-the-loop activity. Both of these options
are based on satellite attitude rates. It has been demonstrated that 20 m of skiprope is manageable
using either of these approaches. Because of the labor intensity of the man-in-the-loop option, the
PCS approach was chosen as the prime. The man-in-the-loop was chosen as the backup.

Numerous off-line cases have been run to verify the approach. Table 4 shows the results of
two of these cases, while figures 68 through 73 show the responses plotted versus length.

The PCS satellite control had been baselined to be active from 1,200 m to 180 m. In the off-
line simulations cases run, satellite angular deviations were small and docking occured. Results from
preflight shuttle mission simulator (SMS) simulations with high-fidelity PCS software simulations
did not support the performance of the PCS, so that its usage as prime for TSS-1 was very question-
able. Manually controlling satellite attitude in the SMS was still acceptable.
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TETHERED SATELLITE SYSTEM SIMULATION

SPEC 50

1 2 3
12345678901234567890123456789

VARIABLE ASSIGNMENTS

4 5 6
012345678901234567890123436

DACA LINK STATUS OK

SPEC 50 TETHER DYNAMICS DDD/HH:MM:SS
RADAR DATA: ACTUAL D

FEET | METERS L R LRC M
R RADARF RADARM L. LR pDLC M/S
R DRADRF DRADRM L: DDLC M/SS
EL EL TENO FS FC N
Az Az TENI FCS

THETA THC ©DEG

YAW CNTL MYAW CMD IYAW THETAD DTHC D/S
INLINE 2N IL2 I/0 CMD #d
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Figure 67. Multifunction CRT display system for tether dynamics.

Table 4. Satellite attitude control simulation.

Amrup &,
ATTITUDE XK=

Skiprope at | Maximum | Maximum | Maximum Maximum Docking
Station 2 Satellite Satellite Satellite Satellite Angles* at
Case (m) Pitch Roll Pitch Rate Roll Rate 20m
| 20 by 20 25° 23° 1.8%/s 2.5°%s o=28.0°
p=9.0°
2 30 by 30 60° 59° 3.0%s 7.0°%/s a=12.0°
B=16.7°

» Docking angle limits
— Alpha < 10°
- Beta < 10°

*See page 85 for alpha (o) and beta (B) definitions.
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E. Docking Ring Damper

As was stated previously, not only must the satellite attitude be actively controlled but,
because angular momentum is conserved, and, hence, the relative skiprope amplitude increases as
the tether is retracted, a passive skiprope damper must be utilized. Passively damping the tether is
not simple in that too much damping force introduced will only create a new end point (fixed point or
node point) and become ineffective. Designing and verifying a tether damper for short tether lengths
was, therefore, a major challenge.

Figures 74 through 76 are schematics of the damper used in the docking ring to provide
damping. The system consists of a triangular yoke and ferrule connected to three individual negator
motors attached to the docking ring. The negator motors are a constant spring (load) system that
rolls in and out as the tether moves the yoke. Figure 77 shows the basic characteristics of the
negator motor. Because these motors have to be a damper system and must perform in a vacuum at
low temperatures, it was necessary to fully understand and model their characteristics so that an
analytical prediction could be made of their effectiveness in damping skiprope as the satellite was
retrieved. As a result, extensive engineering tests were conducted to prove the concept and estab-
lish data characteristics. The test results were correlated with simulations of the tests, and models
reflecting the correlation were developed for use in time-domain mission skiprope simulations. In
addition, the hardware went through the standard qualification/acceptance tests in thermal vacuum
conditions.

Salellite

Tether
Concentric Ring

Damper (Added)

Existing Docking

Ring U-2 Tether

Guard (Added)

12 Meter Deployment
Boom

Figure 74. Skiprope docking ring damper.
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One set of tests was to determine the damping characteristics of the docking ring damper.
This was conducted using the three negator motors and the yoke with a tether attached to the bugle
and a bob mass with a light on the free end. Using a camera at a distance of 64 ft, the motion of the

bob was tracked from an excited circular motion in free decay (fig. 78).

Negator

BoB
Masslight

Camera
Distance

64

B Camera

Figure 78. Circular pendulum test setup.
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An analytical model was formulated of this test setup, including the force of gravity, the initial
impulse, and the negator motors. The analytical model of this damping system includes terms of
equivalent viscous damping for viscous, hysteresis, and coulomb friction damping. Typical values
used in the simulations and a more detailed description of the tests performed to quantize these
equivalent coefficients are found in reference 7.

Figures 79 and 80 are typical plots of test results compared to the analytical models. Very
good results have been achieved in developing a model to match the test data.

Because the negator motors are temperature and_vacuum sensitive, tests had to be run to
simulate various conditions. Tests were run for temperatures of +100 °C, 25 °C, and -120 °C. The
expected on-orbit operational temperatures should be near, but not exceed, the -120 °C case.

16 Simulation Conditions Assumed:
g : Tested in Atmosphere
§ 141 Negator Motors, Constant Force = 1.667-n (3/8 #)
! Coulomb Friction = 0.065 n (7.8%)
g 127 Tether Tension =2 n
Note:
& 10 h The Negator Assembly
% Sticks at Approx. 5 - Deg.
c 8 A Results of Test
g Simulation
:% 4 7mmmws¢mmm WV
g FR of Test Data NWVWWWVW\;
2 ] }
0 10 20 30 40 50 60 70
Time - Seconds

Figure 79. TSS skiprope damper, comparison of test data with simulation response.

30

20

LT AT A A A A
AT AAA

Time (seconds)
Figure 80. Skiprope damper circular pendulum test data (comparison with analysis).
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Taking the test-derived (correlated) analytical model and incorporating it in the time domain,
a skiprope dynamic simulation was run starting at a tether length of 100-m and 20-m skiprope, then
retrieving it to 10 m. Figure 81 shows the results for the three different temperatures simulated. In
all cases, the skiprope was damped to less than 1-m amplitude. The -125 °C case damped much
quicker than the +100 °C and 25 °C cases. Later, this damping model was used in end-to-end simu-
lations of the TSS-1 mission to show ability for satellite recovery.

18 T T T r
—a— {000 . |
" —+— 25°C =
z ——  .120°C B // /
12 o A
= vV
s pd AL
3 10 ‘e 7
AT A
& Vs /
o V 4
8 /
Lg.- 4 —a— / ——— S
7 S e —14 I A O O
0 -

0 10 20 30 40 50 60 70 86 90 100
Tether Length (m)
Figure 81. Skiprope damper performance as affected by temperature.

1. Qualification/Acceptance (Negator Motors). The negator motor and yoke had to go through
a complete and formal acceptance verification. Figure 82 shows the flow of this formal approach. As
shown on the flow diagram, these elements show how the various tests conducted were flowed
together to augment final qualification and verification of the performance (damping) under various
temperatures and vacuum conditions, including damping determination, before and after random
vibration testing. Figures 83 and 84 show the docking ring with negator motor and the test setup,
respectively. Two different force motors are shown in figure 84, along with the rotational potentiome-
ter instrumentation.

An alternate damper was designed and tested, but was not selected for incorporation into the
hardware (fig. 85, ref. 3).

Table 5 lists the characteristics achieved by each of the negator motors for the various tem-
peratures. All the motors met the qualification acceptance requirements.
F. Other Control Modes
Three other control modes are available to augment the skiprope control plan just presented:
(1) programmed current flow, (2) slow retrieval from approximately 1,000 m, and (3) satellite spin.

Although not baselined for TSS-1, these approaches were available to help contain skiprope. On
future missions, they could be part of the baselined approach.
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Table 5. Skiprope damper characteristics.

-120 °C 25 °C 100 °C
Flight Force Hysteresis Force Hysteresis Force Hysteresis
Negator (1b) (percent) (1b) (percent) (1b) (percent)
A 0.572 12.04 0.458 6.85 0.501 4.61
B 0.594 12.50 0.475 6.68 0.587 4.61
C 0.559 11.46 0.458 6.85 0.583 7.07
Average 0.575 12.00 0.464 6.79 0.542 547

1. Programmed Current Flow. Current flow has been shown to excite skiprope or dampen it
depending upon its phasing relative to Earth’s magnetic field and the skiprope motion. It is particu-
larly effective on station 1 if the skiprope amplitude becomes excessive. To utilize this approach, the
time-domain skiprope observer calculates the required parameters. They are:

— Time to start current flow (skiprope phase)
— Duration of current flow (skiprope period).

To demonstrate the effectiveness of this approach, a 35- by 8-m elliptical skiprope
case with approximately 4 m of third-string mode amplitude was chosen. The simulation went from
19 hours to 20.5 h. The phased current flow was performed from 19.65 to 20.15 h. Figure 86 shows
the current flow profile used from 19 to 20.5 h. Only the current flowing from 19.65 to 20.15 h was
phased to dampen skiprope, the rest is normal science. Figure 87 shows the reduction in skiprope
amplitude, while figure 88 shows the reduction in skiprope angular momentum. The amplitude was
reduced from 35 m to less than 15 m, while the angular momentum approached zero.

2. Slow Retrieval. The mission period of satellite retrieval from approximately 1 km to 20 m
is critical to satellite retrieval because this is the region where the satellite’s pendulous motion and
skiprope resonances coalesce, and the relative skiprope amplitude increases due to angular momen-
tum conservation. The slow retrieval allows more time for satellite attitude control to dampen out
satellite motion and skiprope, and for the concentric damper to dampen skiprope. The down side of
this approach is longer mission time, which pushes the battery life limit and could interfere with other
mission objectives.

To simulate this effect, a case of 50 m of circular skiprope at station 2 (2,400 m) was chosen
as the starting point. The satellite was retrieved 10 a tether length of 20 m. Figure 89 shows the
tether length versus time and the tether retrieval rate versus time. Figure 90 plots the skiprope
amplitude and angular momentum Versus tether length. As is shown on the plots, the slow retrieval
was very effective in damping even this large initial skiprope amplitude and angular momentum.
Figure 91 shows the satellite pitch attitude and pitch rate versus length, while figure 92 shows roll
attitude and rate. Figure 93 shows the control impulse used, while figure 94 shows the « and f
satellite docking angles. Here, « is defined to be the angle between the line from the centerline of the
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Figure 94. Slow retrieve simulation (satellite docking angles).

boom and the line formed by connecting the bugle head top point to the center of gravity (CG) of the
satellite. Likewise, B is the angle between the line from the CG of the satellite to the attach point
and the line formed by connecting the bugle head top to the CG of the satellite.

3. Spinning Satellite. Spinning the satellite during this last portion of the retrieval cycle
transfers the tether/satellite attitude coalescence to a different length to stabilize the satellite and
reduce the attitude control requirement. To demonstrate the effectiveness of this approach, a 20-m
circular skiprope simulation (retrieval) was started at 2,400 m. The satellite was retrieved to a
length of 20 m at the nominal rate. PCS (satellite attitude control) and the concentric ring damper
were active in the later portions (750 m to 180 m ). The satellite was spun at 4.2°/s at 950 m and
allowed to passively spin for the rest of the simulation. Figure 95 shows the pitch and roll control
impulse versus tether length, while figure 96 shows the skiprope amplitude and angular momentum,
and figure 97 shows the o and B8 docking angles. This approach is effective in reducing energy of the
system and meeting all docking requirements. The results of this study show that:

— Spinning satellite reduces energy transfer to satellite from skiprope

Reduces PCS (attitude control) activity required to control satellite attitude

Reduces satellite attitude excursions during coalescence

Increases the residual skiprope following coalescent which must be removed by the
concentric ring damper

— The concentric ring damper effectively removed this additional skiprope.
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G. Operational Procedures

Control of skiprope is managed by using the satellite attitude data telemetered to the ground.
In real time, these data are fed to redundant MassComp computers which contain the preprocessor
and the time and frequency observers. Using these systems and trained operators to interpret the
data, as well as guidelines from procedures developed preflight, the control team/flight crew formu-
lates the necessary operations for the crew to execute in real time.

As in standard-practice mission design, a series of safety gates has been set up for the
various mission phases that become decision points for the operational teams. These mission-
specific gates are based on the skiprope amplitude and phase as predicted by the observers. Some of
the gates were shown in the initial portion of the paper (fig. 42); for example, 20 m is the maximum
skiprope allowable to begin retrieve from station 2.

V. END-TO-END SIMULATIONS

End-to-end simulations of the total TSS-1 mission were performed to demonstrate that the
proposed skiprope controls will work in an environment which is as close to reality as is available
preflight, including higher-order skiprope modes and skiprope observers. The time-domain observer
utilized the model certified for flight. Also considered was simulated telemetry data, assumed errors,
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and data dropouts. The skiprope controls were in conjunction with the model 3 dynamics (20-bead
model of tether). The case that is presented included the following:

Phased current flow

— Yaw maneuver

PCS control of satellite using validated PCS models

Concentric damper using test-verified models and parameters.

Use of the baseline skiprope control operations allows successful retrieval of the satellite.
The system meets all docking constraints. It is concluded that the use of the baseline approach
(skiprope control) enhances the probability of a successful mission. The results of an end-to-end
simulation show the basis for this conclusion.

Table 6 gives the skiprope amplitude at various times of the mission. The maximum skiprope
observed during science operations was 55 m. At the start of retrieve 2, the amplitude was 14 m
maximum. Figures 98 through 103 show the time-domain (total mission) results for the skiprope
amplitude, skiprope angular momentum, satellite pitch (in degrees), satellite pitch rate
(degrees/second), satellite roll (degrees), and satellite roll rate (degrees/second). Due to the com-
pression of the time scale, it is difficult to identify the effects of the individual events, although the
effects of the yaw maneuver are clear around the 25-h time point. The yaw maneuver and second
retrieval events are presented with expanded time scale.

Figure 104 shows the orbiter yaw rate in degrees per second. Figure 105 shows the skiprope
amplitude as it is reduced from about 25 m to 10 m. Figure 106 shows the reduction in skiprope
angular momentum and indicates a reduction from about —200 N-m-s to approximately -25 N-m-s.

The results during the second retrieval are shown on figures 107 through 118 and include
skiprope amplitude (m), skiprope angular momentum, out-of-plane and in-plane skiprope third-
mode amplitude (m), satellite attitude pitch (degrees), pitch rate (degrees/second), roll (degrees),
roll rate (degrees/second), and pitch control impulse. Satellite docking angles and B are also
included. The effects of resonance between satellite pendulous motion and skiprope dynamics can be
clearly seen around the 29-h time period.

The effectiveness of the PCS damping satellite motion is observed from 29.2 to 29.6 h. The
effects of the concentric docking ring damper upon the skiprope amplitude can be seen on figure 107
from 29.8 to 30.6 h. It is also effective in damping third mode (figs. 108 and 109). The skiprope angu-
lar momentum also approaches zero (fig. 110).

Although limited, end-to-end simulation results demonstrate they can predict the basic
capability of the skiprope control approach which has been baselined.
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Table 6. Skiprope amplitude during mission from end-to-end simulation results.

State of End of Start of After
End of Current Current Yaw Yaw Start of
Station 1 Damping Damping Maneuver | Maneuver | Retrieve 2
Skiprope 55 by 7 58 by 8 35by5 35by 17 17by 5 14by 6
Amplitude
(m)
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Figure 115. End-to-end simulation results (satellite pitch control impulse).
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VI. TSS-1 FLIGHT RESULTS

The tethered satellite flight (TSS-1, STS-46) was launched on July 31, 1992. Mechanical
difficulties precluded deployment to planned length. Only 256 m of tether deployment was reached
with some difficulty (fig. 119). The satellite stayed at this length for a significant period. At 256 m,
only approximately 40 V of EMF and a tether current close to 20 mA were achieved. Tether currents
at this level were not great enough to significantly excite the tether string dynamics, however,
skiprope amplitudes of less than 1 m due to other excitation sources were observed. Libration
modes, satellite pendulous oscillation, and longitudinal slack/taut tether dynamics were experienced.
The crew demonstrated that the procedures and controls to control these dynamics were adequate.
At 256 m, the system was stable with respect to the orbiter, and the satellite remained at this length
and dynamic state with very little maintenance required by the crew. Also, it was demonstrated that
in the region of greatest concern from a safety and mission success standpoint (close proximity, both
deploying and retrieving), the satellite was well behaved and within flyable envelopes. The crew
also had the opportunity to use the manual tether length control mode, which is a contingency mode.
The manual mode provided the flexibility needed to deal with the anomalous conditions of this

mission.

While little was learned about the skiprope, much was learned concerning the total dynamics
of the TSS, and the flight served to whet the appetite of the scientists and the dynamicists alike.
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Figure 119. Measured unstretched tether length.
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VII. SUMMARY

In summary, the control of tether dynamics, including skiprope containment, has been demon-
strated by simulations. The basic understanding of the physics of the problem has been verified to
the extent possible on Earth. The tether deployment and docking mechanism was verified and accep-
tance tested prior to flight. A detailed skiprope control plan was in place, its design completed, and
all systems verified. It worked very well during flight. Those include three observers for estimating
skiprope data from the satellite telemetry data.

— Time domain

— Frequency domain

— Visual by crew.

For TSS-1, the skiprope control tools for the plan were:

— Orbiter yaw maneuver

— Canted satellite side thrusters

Payload control supervision or manual control

Deployer boom tip damper

Tether current flow

Contingency maneuvers (slow retrieval and spinning satellite).

All were verified and put in place with proper procedures definition and training (ground and
flight crews). All ground and flight equipment were certified. The system worked as expected during
TSS-1 flight.

The various simulations used to design, verify, and operate the system went through a rigid
verification process to show they all produce comparable results.

The orbiter safety was provided for and verified by using:
— Redundant tether cutters

Orbiter breakout maneuver

Completed phase III safety review

Completed flight operations review,

Although there are risks in flying”z’i' éj}stem that cannot be totally ground verified, reasonable
steps were taken before the system was declared ready for flight. The flight showed no real evidence
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of skiprope out to the 256 m of deployment achieved. In fact, most of the tether and end-body
dynamics displayed better behavior than expected. Flight evaluation is currently in progress.

It is shown in this report that there is a strong interaction between orbital mechanics of the
tethered system, various dynamic modes such as satellite libration, pendulous modes, and tether
skiprope—all requiring various control procedures to ensure a successful mission.

TSS-1 design, in the initial phases, concentrated on the various elements, satellite, tether,
and deployer/retrieval mechanism design. Only in the later phases did the full system interaction of
the tethered system become clear, indicating the various interaction problems discussed in this
report. As a result, the solutions to the skiprope control became add-on fixes, emphasizing opera-
tional procedures versus the development of an up-front system hardware/software design. Future
tethered satellite missions should start with the system understanding developed during TSS-1 and
then develop a new set of requirements. The design should be a more integral system for handling
all the interactions, particularly satellite modes and skiprope. As an example, fully automatic closed-
loop attitude control of the satellite in conjunction with passive dampers could possibly control the
modes without the orbiter yaw maneuver. Dampers could be located on the satellite as well as the
deployer docking ring. This approach could potentially eliminate the intensive ground operations
using the observers, yaw maneuver, and the PCS damping of the satellite pendulous mode.

VIII. CONCLUSION

The first TSS mission did not provide sufficient experience to verify the total adequacy of the
system; however, the lessons learned in designing and verifying this system provide a sound basis
for design of future tethered satellite missions. These lessons learned will allow possible simplifica-
tion of the system such as full closed-loop satellite attitude control and a more refined deployer tip
damper. These improvements will, in all likelihood, eliminate the orbiter yaw maneuver requirement,
and could eliminate the need for the skiprope observer, though, for other reasons, they may still be
required.

The overall skiprope management could therefore be simplified, depending on future flight
experience.
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